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Abstract

In this paper, we proposed a stacked non-local atten-

tion based variational autoencoder (VAE) for learned im-

age compression. We use a non-local module to capture

global correlations effectively that can’t be offered by tradi-

tional convolutional neural networks (CNNs). Meanwhile,

layer-wise self-attention mechanisms are widely used to

activate/preserve important and challenging regions. We

jointly take the hyperpriors and autoregressive priors for

conditional probability estimation. For practical applica-

tion, we have implemented a sparse non-local processing

via maxpooling to greatly reduce the memory consumption,

and masked 3D convolutions to support parallel process-

ing for autoregressive priors based probability prediction.

A post-processing network is then concatenated and trained

with decoder jointly for quality enhancement. We have eval-

uated our model using public CLIC2019 validation and test

dataset, offering averaged 0.9753 and 0.9733 respectively

when evaluated using multi-scale structural similarity (MS-

SSIM) with bit rate less than 0.15 bits per pixel (bpp).

1. Introduction

Learned image compression methods [3, 6, 9] are usu-

ally based on the well-known autoencoders, transforming

raw image data into compressible latent features by stacked

CNNs. These methods achieve joint rate-distortion opti-

mization (RDO) in an end-to-end learning manner. A va-

riety of loss functions can be adapted for learning towards

individual optimization requirements, for example, mean-

squared-error (MSE) loss for pixel distortion measurement,

MS-SSIM loss for structure similarity, etc. Thanks to

the advances in high-efficiency transforms (e.g., general-

ized divisive normalization [2]), differentiable quantization

(e.g., derivable rounding [10], adding uniform noise [2] and

soft-to-hard decision [1]), and learned entropy model (e.g.,

masked convolutions [6], hyperpriors for probability esti-

mation [3] and joint priors from autoregressive neighbors

and hyperpriors [7]), learned image compression methods

present a great success compared with traditional codec
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Figure 1. Illustration of our image compression framework us-

ing stacked non-local attention module (NLAM). Q denotes the

quantization. AE and AD represent arithmetic encoding and de-

coding. Network parameters are shown below. For example,

“Conv5×5c64s2” illustrates a convolution layer of 5×5 kernel

size, 64 channels and 2-pixel stride. In NLAM, ”NLAMc192s8”

represents that all the convolutions have identical 192 channels and

the sparse sampling factor of maxpooling is 8 for memory reduc-

tion (e.g., 1/64).

such as JPEG, JPEG2000, BPG both subjectively and ob-

jectively.

VAE architecture was first proposed in [3] to use hyper-
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priors for better entropy modeling of quantized latent fea-

tures. In the meantime, Generalized divisive normalization

(GDN) was widely applied because of its reported high-

efficiency than other activiations such as ReLU, leakyReLU

etc. Later, explicit content weighted importance maps were

developed to guide adaptive bit allocation for better quality

at the same bit rate in [6] and [4]. In contrast to widely used

MSE loss, Rippel et al. [9] attempted to apply MS-SSIM

loss function, resulting in much better visual quality (par-

ticularly for low bit rate scenario). Meanwhile, multiscale

discriminators can be also included to do adversarial opti-

mization, offering visually appealing reconstructions even

with bit rate < 0.1 bpp.

However, all aforementioned methods are constrained to

the local operations due to limited receptive field of CNNs.

They could not capture long-range dependencies effectively

and caused optimization problems even with deeper archi-

tecture. Furthermore, existing adaptive bits allocation meth-

ods always depend on an integral importance map at the bot-

tleneck layer which is only applied to the quantized latent

features. The importance map generation method is also too

simple to handle complicate content.

In this paper, we applied non-local modules (NLM) [11]

in compression framework enabling the model to capture

global correlations, and combined it with stacked CNNs to

further generate advanced attention mask for layer-wise fea-

ture activation. Traditional non-local operations require a

large amount of memory, making it impractical in appli-

cations. Thus, we introduced the sparse non-local process-

ing via maxpooling to greatly reduce the memory consump-

tion but preserve the efficiency. Meanwhile, we employed

a masked 3D convolutions to support parallel prediction of

probaility estimation using autoregressive neighbors, lead-

ing to considerable decoding time reduction according to

our extensive simulations. Here we only use 1/W decoding

time compared with original masked convolutions. Another

post-processing network is provided and trained with de-

coder jointly to improve the image reconstruction quality.

2. Non-local Attention Modules (NLAM) for

Image Compression

Figure 1 depicts the proposed image compression frame-

work, consisting of several piped NLAM for both main and

hyper autoencoders. The main autoencoder is used to obtain

the reconstructed image and the hyper autoencoder gener-

ates quantized features at much lower resolution for condi-

tional probability modeling of the quantized latent features

from main autoencoder. We have applied a 3D conditional

context model to joint leverage the autoregressive and hyper

priors for better entropy modeling.

Conv

ReLU

Conv

Input 
feature

NLM

ResBlock

ResBlock

ResBlock

ResBlock

1x1 Conv

Sigmoid

Output 
feature

N M

Figure 2. Diagram of NLAM embedded in proposed image com-

pression framework. N = M = 4 in this work.

2.1. Sparse NLAM

Inspired by recent works in [11], we proposed to use

NLAMs to guide adaptive feature generation. As shown

in Fig. 2, the basic NLAM has two branches. The main

branch uses M residual blocks to extract the main features.

The mask branch utilizes a non-local module (NLM) fol-

lowed by N residual blocks, and finally generates an im-

plicit attention mask by cascading a 1×1 convolution and a

sigmoid function. Attention mask commonly has its vari-

able ranging from 0 to 1 continuously which can be used to

give efficient weights for features extracted from the main

branch. In addition, residual connections is used for better

convergence. Here, we remove the batch normalization lay-

ers (BN) in the residual blocks and do not add non-linear

activation after residual connection.

In reality, NLM requires a large amount of memory to

host a correlation matrix at size of HW ×HW . Note that

H and W are the height and width for input feature map.

We then apply the maxpooling to enable the sparse NLAM

by downscaling the correlation matrix layer by layer. We

set scaling factor s to balance overall NLAM under lim-

ited memory. Note that we use Gaussian embedding in our

framework to achieve non-local operations [11].
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Figure 3. Illustration of the parallel 3D masked convolutions. Left:

the masked convolution takes all the former pixels into considera-

tion following strictly sequential processing pixel by pixel; Right:

Parallel processing at each line by removing left neighbor for con-

volution, leading to noticeable speed up of probability prediction.

2.2. Parallel 3D Masked Convolution

PixelCNNs and PixelRNNs [8] are usually proposed to

capture the natural image probability distribution in a spe-

cific prediction order. Both 2D and 3D masked convolu-

tions can be extended to model the entropy rate in the quan-

tized latent features pixel by pixel. Although the masked

convolutions can leverage the neighbor pixels to predict the

current pixels efficiently, it usually leads to a great compu-

tational penalty because of the strictly pixel-by-pixel pro-

cessing, making the compression framework far from the

practical application.

As shown in Fig. 3, we take a 3×3×3 convolution for ex-

ample. As we used the left neighbor (highlighted in Yellow)

for masked convolutions, each current pixel is predicted in

a raster scan manner, and it takes H×W×C convolutions

to complete all feature maps. Here, C represents the num-

ber of channels of the quantized latent features. The right

modified masked convolution is used in our context model

which only needs H×C convolutions by removing the left

neighor. This ensures the parallel processing for each line.

Simulations show that negligible performance impact is re-

ported.

2.3. Entropy Modeling

We build different density models for ŷ and ẑ. Here, ŷ

and ẑ represent the quantized latent features and the hyper

encoded features respectively. For ẑ, we model the priors

using a non-parametric, fully factorized density model fol-

lowing [3]. We convolve it with a standard uniform density

to get pẑ|ψ ,

pẑ|ψ(ẑ|ψ) =
∏

i

(pzi|ψ(i)(ψ(i)) ∗ U(−
1

2
,
1

2
))(ẑi), (1)

where ψ(i) represents the parameters of each univariate dis-

tribution pẑ|ψ(i) .

For ŷ, each element ŷi can be modeled as a Gaussian
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Figure 4. The post-processing network used in this work. For ex-

ample,”RB2s2” represents 2 residual blocks with a 2×2 downsam-

pling convolutional layer.

distribution by joint autoregressive priors and hyperpriors,

pŷ(ŷi|ŷ1, ...,ŷi−1, ẑ) =
∏

i

(N (µi, σi
2) ∗ U(−

1

2
,
1

2
))(ŷi), (2)

where ŷ1, ŷ2, ..., ŷi−1 denote the causal (and possibly re-

constructed) pixels and ŷi is the current pixel to be pre-

dicted, its µi and σi are predicted by the joint priors. Then

we can simply use the cumulative distribution function

(CDF) to calculate the probability of each symbol by Gaus-

sian distribution.

We evaluate the bits of ŷ and ẑ using:

Rŷ = −
∑

i
log2(pŷ(ŷi|ŷ1, ..., ŷi−1, ẑ)), (3)

Rẑ = −
∑

i
log2(pẑi|ψ(i)(ẑi|ψ

(i))). (4)

2.4. Post­processing Network for Quality Enhance­
ment

Post-processing is widely used in tradtional codec to fur-

ther enhance the quality of reconstructed image. Several

methods utilize CNN networks to learn a non-linear map-

ping to remove the block artifacts caused by lossy compres-

sion. We introduce one in this work that is trained with the

decoder jointly, as shown in Fig. 4. In the other words, the

post-processing network is cascaded with the decoder net-

work which makes the network deeper and achieve better

reconstructions.

2.5. Model Adaptation­Based Rate Control

Three different models (level i ∈1,2,3) are used for

RDO to meet bit rate budget imposed by the CLIC test..

First, all the images are encoded at the highest bpp (i =
3) as the initial state. Then, images with the minimum
MS−SSIMi−MS−SSIMi−1

filesizei−filesizei−1
will be encoded at lower bpp by

adapting models iteratively until the overall file size meets

the requirement (lower than 0.15 bpp).

3. Experimental Discussion

We use COCO [5] training dataset to train our frame-

work. We randomly resize the images and take 256 × 256



Table 1. Result on CLIC2019 validation dataset
Entry MS-SSIM PSNR Image Size

TucodecSSIM 0.9758 29.84 4692810

NJUVisionSSIMF 0.9753 29.61 4715606

ETRI 0.9751 29.70 4722275

JointSSIM 0.9751 29.76 4721983

.... .... .... ....

cropped patches for preprocessing. We choose MS-SSIM

as our distortion metric and the loss function is

L = λ(1−MS− SSIM) +Ry +Rz, (5)

where we set different λs to achieve rate-distortion trade-off

to generate several models for variable compression ratio.

In our experiment, we set λ to 4, 8, 12 to obtain our mod-

els. We replaced the MSE with MS-SSIM [12] because it

is reported to have better correlations with our human vi-

sual perceptual sensation, especially at low bitrate. All of

the modules in our framework are trained together. Batch

size is set to 64 and finally trained on 4-GPUs in parallel.

The learning rate is first set to 10−4 and is halved every

5 epoches until reaching the convergence. After that, we

utilize the post-processing network to enhance the images,

resulting in another 0.0004 to 0.0008 MS-SSIM improve-

ment.

We have evaluated our model on CLIC2019 validation

and test dateset, and achieved averaged 0.9753 and 0.9733

MS-SSIM respectively with bit rate < 0.15 bpp. As shown

in Table 1, we achieved the second place on the CLIC val-

idation leadboard among all teams participating the MS-

SSIM distortion evaluation category.

4. Conclusion

We proposed a practical stacked non-local attention

based variational autoencoder for learned image compres-

sion and achieved noticeable performance efficiency on

public CLIC test datasets. Sparse sampling for correla-

tion matrix is introduced to greatly reduce the memory con-

sumption in non-local modules. By remove left neighbor

for prediction, we offer parallel 3D masked convolutions for

probability estimation using autoregressive priors, leading

to considerable decoding time speed-up (i.e., from pixel-

by-pixel processing to line-by-line processing when using

parallel pixel prediction). We think the non-local attention

modules is crucial for the improvement in our compression

framework. Certainly, a deeper context model will further

improve our coding efficiency but require more decoding

time. Block-based optimization used in traditional codec

can enforce more parallelism but it might also introduce

blocky or boundary artifacts.
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